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機器學習與深度神經網路 

用於心臟電位影像重建 

 

陳可維1  林哲偉2 

國 立 成 功 大 學 生 物 醫 學 工 程 學 系 

摘 要 

心臟電位影像重建(Electrocardiographic imaging)是基於體表所測得之心電圖，

重建心臟表面或內部的電位分佈的過程。此問題亦被稱為反向問題(Inverse Problem)。

由於此問題在本質上無法得出唯一解，以及不容易針對體表與心臟間的電傳導性建

模，目前針對此問題所發展出的方法，其準確度約 0.7(所重建的心電圖與實際心電

圖之間相關系數之中位數)。本研究嘗試使用神經網路解決此問題，以增加模型的準

確度。 

本研究使用之兩組資料，一是來自於豬體表所量測之多個心電圖訊號，二是同

時量測之豬心臟表面的心電圖。第一部分的研究，訓練與測試模型的資料皆來自同

一之豬。所使用之神經網路有兩種。一是由數個全連接層(Fully Connected Layer FCN)

所組成之神經網路，二是由長短期記憶(Long Short-Term Memory LSTM)神經網路所

組成。第二部分的研究，我們將來源於不同的五隻豬之資料進行轉換，加以統合。

接著我們使用卷積神經網絡(Convolutional Neural Network CNN)來建立模型。本研究

使用留一驗證（leave-one-out cross-validation）作為模型準確度的驗證方法。 

若比較重建的心臟表面心電圖與實際心電圖，在第一部分研究中，使用全連接

層 FCN 之部分，整體的相關系數之中位數以及前四分之一與後四分之一的數值為

0.90 [0.68–0.96]。使用全連接層 LSTM之部分則為 0.82 [0.54–0.93]。在第二部分研究，
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使用 CNN，整體的相關系數之中位數以及前四分之一與後四分之一的數值則為 0.74 

[0.22–0.89]。 

若比較重建的激發時間圖(activation map)，在第一部分研究中，使用全連接層

FCN 之部分，整體的相關系數之中位數以及前四分之一與後四分之一的數值為 0.86 

[0.61–0.93]。使用全連接層 LSTM之部分則為 0.52 [0.05–0.80]。在第二部分研究，使

用 CNN，整體的相關系數之中位數以及前四分之一與後四分之一的數值則為 0.82 

[0.67–0.93]。 

若比較激發點位置誤差(localization error)，在第一部分研究中，使用全連接層

FCN之部分，整體的距離之中位數以及前四分之一與後四分之一的數值為 10.4 [3.6–

22.6] mm。使用全連接層 LSTM之部分則為 18.5 [6.4–41.5] mm。在第二部分研究，

使用 CNN，整體的相關系數之中位數以及前四分之一與後四分之一的數值則為 9.3 

[3.4–17.0] mm。 

本研究顯示，針對心臟電位影像重建，我們可以使用相對少量的資料解決。我

們所達到的最佳結果為 0.74(所重建的心電圖與實際心電圖之間相關系數之中位數)。

此外，本研究也顯示並不需要精確的座標資訊來重建心電圖。針對模型的準確性而

言，在不同的豬隻與不同的量測結果之歧異度仍然很大。這可能與資料量相對較小

有關，這可以在第二部分研究中看到。其整體準確度較佳，可能與其整合了所有的

資料，其資料量較第一部分多有關。臨床應用部分，此研究顯示可使用非侵入性的

體表量測心電圖，來找尋心臟的電刺激源點。此資訊可用於心室早期收縮病人之治

療。 

 

 

關鍵詞：心臟電位影像重建(Electrocardiographic imaging)、反向問題(Inverse Problem) 

、機器學習(Machine learning), 深度學習(Deep Learning) 

  



 

iii 

 

Solving Inverse Electrocardiographic Mapping 

Using Machine learning and Deep Learning 

Frameworks 

 

Ke-Wei Chen1  Che-Wei Lin2 

Department of Biomedical Engineering 

National Cheng Kung University, Tainan 701, Taiwan, R.O.C. 

Abstract 

Electrocardiographic imaging reconstructs the heart surface as an electrogram using 

the potentials recorded from the body surface. This problem is called the inverse problem. 

Due to the ill-posed nature and the difficulty in modeling the conductive property of the 

body, currently, the overall accuracy for a reconstructed electrogram is only 0.7(median 

correlation coefficient for activation time map). This study tries to improve the model’s 

accuracy using a neural network. 

Electrocardiograms are simultaneously recorded from pigs’ hearts and their body 

surfaces. For part I of the study, we trained and tested the model with the same pig. The 

neural network is composed of Fully Connected Neuro network (FCN) and Long Short-term 

Memory (LSTM) neural network. For part II of the study, we align the data from five 

different pigs by transforming the torso potential data into 2D data and transforming the 

epicardial potential data with a registration method. A Convolutional Neural Network is used 

to construct the model. We evaluated the method using leave-one-out cross-validation.     

For the reconstructed electrogram in part I, the overall median of correlation efficient 

with the first to third quantiles are 0.90 [0.68–0.96] and 0.82 [0.54–0.93] for FCN and LSTM, 

respectively. In part II, the overall median of the correlation efficient with the first to third 

quantiles is 0.74 [0.22–0.89]. 
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For the reconstructed activation map in part I, the overall medians of the correlation 

efficient with the first to third quantiles are 0.86 [0.61–0.93] and 0.52 [0.05–0.80] for FCN 

and LSTM, respectively. In part II, the overall median of the correlation efficient with the 

first to third quantiles is 0.82 [0.67–0.93]. 

For the localization error of the predicted pacing site in part I, the overall medians of 

the correlation efficient with the first to third quantiles are 10.4 [3.6–22.6] mm and 18.5 

[6.4–41.5] mm for FCN and LSTM, respectively. In part II, the overall median of the 

correlation efficient with first to third quantiles is 9.3 [3.4–17.0] mm. 

In conclusion, a neural network can be used to solve the inverse problem of ECGi 

with relatively small datasets. Our best result shows overall median of the correlation 

efficient to be 0.82. Our study also shows that a rough geometrical information of torso and 

heart may be enough to reconstruct the epicardial gram. Performance of the model is 

inconsistent between different recording and pig. This may be due to relatively small dataset 

and may improve with larger dataset. As shown in part II study, it has better result when 

model is trained with more data. In clinical setting, this study shows the potential to identify 

source of pacing site with non-invasive electro-cardiogram recorded from the surface, which 

can be applied to evaluation for patient with premature ventricular contractions.   

Keywords: Electrocardiographic imaging, inverse problem, Machine learning, Deep Learning  
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                                                      Chapter 1  

Introduction and Background 

1.1. Inverse Electrocardiographic Mapping 

Studying the electrical activity of the heart is important for clinicians to make diagnoses 

or for monitoring. By placing electrodes over the body surface, such as the chest and limbs, 

we can reveal the electrical activity remotely and non-invasively. The graph data we gather 

is referred to as electrocardiography (ECG or EKG). The recording can also be invasive, 

gathering potential information directly from the endocardium through a catheter. The 

information gathered is referred to as an intra-cardiac electrogram. By combining the 

electrogram with its geometrical location, we can map the results to the endocardial surface, 

which is referred to as electroanatomical mapping.  

Monitoring the heart’s electrical activity via body surface recordings is an indirect 

measurement method. For example, the typical 12-leads ECG system only shows 12 time 

series data with a rough direction for each potential recording; therefore, it is difficult to 

locate the anatomical location of abnormalities. It will be very helpful if we could directly 

see the heart potential with its geometrical location over the heart. There have been many 

attempts to map body surface recordings to the heart; this process is called inverse 

electrocardiographic mapping. Usually, the target of mapping is the potential over the heart 

surface (epicardial potential). This mapping can also be referred to as electrocardiographic 

imaging (ECGi).[1] 

ECGi is currently use for heart arrythmia, since it can provide the geometrical 

information of the electrical abnormality of a heart. Currently, atrial arrhythmias(Af) is the 

most common arrhythmia that incorporate the ECGi into the workflow for treatment. For 

example, it can be use to identify the  specific patterns of activation, which will help the 

physician to plan the ablation before sending the patient to the table. ECGi can also help 

physician to find the source of pacing source. This will be useful for the premature 

ventricular contraction(PVC) ablation. Furthermore, ECGi has also been used to recognize 

the potential slow conduction area of heart. This information can be used to stratify risk of 

ventricular arrythmias.[2] 
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1.2. The importance of inverse electrocardiographic mapping 

For ablation of the arrhythmia source, it is important to identify the location of the 

abnormal rhythm. Traditionally, this is done by electroanatomical mapping, which is done 

by recording the potential information of the endocardium through a catheter. Currently, 

physicians need to perform mapping directly by repeatedly touching the endocardium with 

a catheter, which can be time-consuming. Inverse electrocardiographic mapping can reduce 

the time and provide opportunities for pre-operation evaluation. This has already been used 

in the clinical field for pre-operation evaluation or quick analyses during operations. One 

example is the ECGi system (CardioInsight, Medtronic Inc, Minneapolis, MN). 

1.3. Traditional Methods 

Traditional methods for solving the problem are generally composed of two steps.[3] 

The first is call forward problem formulation, which uses the heart as an electromagnetic 

source. A cardiac source model can be constructed using Maxwell's equations and 

geometrical information. It is usually put in a matrix A: 

∅𝑇 = 𝐴∅𝐻 (1) 

∅𝑇 is the potential over the body surface in vector form, ∅𝐻 is the potential over the heart 

surface, and 𝐴 is the matrix that transforms the heart surface potential into the body surface 

potential, which usually requires geometrical information of the body and heart. The 

modeling of matrix 𝐴 is usually referred to as a forward problem. 

The second step is to perform an inversion of matrix 𝐴. 

∅𝐻 = 𝐴−1∅𝑇 (2) 

𝐴−1 is the inverse matrix of 𝐴. This problem is usually referred to as an inverse problem. 

 Multiple methods has been developed based on this framework. The source of 

electrical activity can be directly modeled as the epicardial potential; it can also be modeled 

from the activation time. The first method is called the potential-based model and the second 

is the activation-based model. The Boundary Element Method (BEM) is used to solve matrix 

A, but it required a mesh from the 3D geometry, which could sometimes be time-consuming 

and can introduce mesh-related defects. The meshless method of fundamental solutions 

(mMFS) was developed to solve this problem. [4] We can simply model the medium 

between the heart and body surface as a medium with consistent conductivity, which is 
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referred to as homogeneous modeling. We can also consider the different conductivity within 

different tissue, such as lung, muscle, and fat; this model is referred to as an inhomogeneous 

model. 

1.4. Problems faced in current methods 

Despite the simplicity of this modeling method, it has many problems. For one, the 

inversion of matrix A is not unique. Moreover, the inverse problem is ill-posed, which means 

that the prediction is subject to noise in the body surface potential; it required further 

regularization [3]. Those abovementioned problems may explain why the currently reported 

accuracy of the reconstructed potential is still not ideal; see Table 2. There are different ways 

to obtain validation. For the torso tank experiment, which used a tank with body surface and 

dog heart as the potential source, the median correlation coefficients can be up to 0.8 (median 

correlation coefficient for electrogram). For an in-situ animal study, the potential from the 

heart and body surface are simultaneously recorded from animals such as dogs or pigs. The 

current accuracy for this study is around 0.7 (median correlation coefficient of activation 

time map) [5]. For validation in a clinical setting, the current result is also around 0.7 (median 

correlation coefficient of activation time map) for paced rhythm. The results are even worse 

for normal QRS, which is 0.03 (median correlation coefficient of activation time map).[6] 

1.5. Neural network for prediction 

In recent years, neural networks have proven to be a useful tool for modeling data with 

complex relationships. Currently, only a few attempts have been conducted to solve the 

inverse problem with a neural network. In one study [7], data is collected from a torso tank 

setting using Time Delayed Neural Nets and Feed Forward Neural Nets (FFNNs). Their 

results are not very ideal with most having a median correlation coefficient <0.5. There are 

two main problems; the first of which is overfitting. The model converges well in the training 

round but performs poorly in the testing round. The second problem is how to apply different 

subjects with different heart and body geometry. This problem exists because the training 

data does not contain information from the geometry. [7] 

In our study, we will build our model directly from data collected from an in situ animal 

study. To build a model that can be applied to subjects with different geometries, we will 

create a data registration method to incorporate the geometric information into the data 

sequence. 
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                                                              Chapter 2  

Material and Methods 

2.1 Overall design of the study 

The open dataset for the ECGi study is quite limited. In search of the internet, there is 

only one website (Experimental Data and Geometric Analysis Repository EDGAR [8]) that 

store the electrocardiogram date, and is open to public. Even in the repository, the amount 

of data is limited. Usually, only partial recording is provided. Out of luck, we have been to 

able to make contact with  Laura Bear who the main collector of a dataset. She performed 

the animal study to acquire this dataset during her doctoral study in Auckland university in 

new Zealand. With this dataset in hand, we design our study as shown in Figure 1. Part I 

indicates the study that trains data only for the same pig. Part II study uses data from all four 

pigs and has an additional step (Registration of electrogram data) that transforms the original 

data into a uniform data format. (Metrics) Models are evaluated in three ways. One is the 

correlation coefficients for the reconstructed electrogram to the recorded one. One is the 

correlation coefficients for the AT map derived from the reconstructed and recorded 

electrogram. CC correlation coefficients. AT map activation time across all epicardial nodes. 
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Figure 1 Overall study process. 

2.2 Data collection 

Previous literature illustrates the details of the data collection process. [9] A short 

summary of the experiment is provided below. There are two sets of data being collected. 

One is electrograms recorded from a vest wrapped around a pig. The electrograms record 

the potential change in the pigs’ body surface. Another set is electrograms recorded from a 

sock wrapped around the heart. The electrograms show the potential changes of the heart 

surface, as shown in Figure 2. (On the left) Demonstration of a pig’s heart surrounded by a 

sock with multiple electrode. (In the middle) Demonstration of a pig’s trunk with heart in 
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the middle. The stripes indicate the array of electrode over body surface. (On the right) The 

position of electrode and geometrical information of the heart and body is extracted from 

MRI image. The figure is adapted from [5] 

 

Figure 2 Electrodes over pig’s heart and torso surface 

 

To place the recording leads, five anesthetized pigs (around 30–49 kg) underwent a 

midline sternotomy. A sock containing 239 unipolar silver wire electrodes was then placed 

around the heart. After the procedure, the chest was closed and air was expelled from the 

lungs. Flexible stripes containing electrodes were placed inside a vest that was wrapped 

around the pig’s torso. The epicardial and body surface potentials were then recorded 

simultaneously. The electrocardiograms are then recorded with a sampling rate of 2 kHz and 

a bandwidth limitation of 0.05–1,000 Hz. The electrograms are further smoothed by moving 

the mean and synchronized average. To reduce the effect of potential shifting, we 

synchronously shifted all electrograms so that the mean of all potential values across all 

nodes at the beginning of the cycle equals zero.  

There are three pacing types: sinus rhythm, epicardial pacing, and endocardial pacing. 

The pacing sites are all across the heart. Overall, there are 76 recordings, each of which 

contains around 10–20 beats. Table 1 shows the composition of the data. About 10–20% of 

the leads on the vest took poor recordings. We used linear interpolation to fill up the missing 

data.  
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2.3 Final data used in the study 

The data is further smoothed by synchronized average and moving mean. After this 

process, each pacing site or sinus rhythm contains only one cycle of electrocardiogram. The 

number of leads over the torso surface is around 150–170 and the total number of epicardial 

leads is 239. Table 1 shows the number of recordings from different pacing sites and 

recording leads. Over the shaded area, number of recordings with different pacing sites or 

rhythms. Over the button 2 rows, number of recording leads over the torso and epicardial 

surface. Note that the whole electrogram cycle is used for model training and testing. Unlike 

most studies, only the potential during ventricular activation is used.  

Table 1 Number of recordings from different pacing sites and recording leads. 

 

Since each pig has a different experiment setting, there is no consistency regarding the 

number of recording leads over the torso and different leads are set at different geometrical 

locations. We can train the model directly from the data but the model may only apply to 

data with the same experimental setting. Thus, we divided the experiment into two parts. For 

the first, we only considered the problem within each individual pig and we built the model 

only for the same pig. For the second part, we incorporated a registration method to unify 

data from different pigs.  

2.4 Part I study: without Considering the Geometry 

2.4.1 Model selection 

Two methods are used to establish a model. One is a neural network with a few fully 

connected layers using Hyperbolic Tangent as an activation function, as shown in Figure 3. 

Another is the Long Short-term Memory (LSTM) model, the structures of which are shown 

in Figure 3. Over the left part, it shows the fully connected model used in this study. Over 
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right side, it shows the LSTM model used in this study. The input size ranges from 1x150–

165 depending on the ECG recording vest used for different pigs. 

 

Figure 3 Models used in cross-validation over data in the same pigs in Part I study 

2.5 Part II study: Add Geometrical Information 

2.5.1 Torso node registration 

The locations of torso leads are projected to a cylinder surrounding the torso. Then, 

the surface of this cylinder is used as a sampling plane to produce a 2D image as shown in 

Figure 4. The torso node geometry data is first centered on the geometric origin and then the 

nodes are projected to a cylinder surface surrounding the torso. The nodes’ distance h to the 

x–y plane will then become the vertical distance. The degree 𝜃 between the y axis and the 

node will then be the horizontal distance. The torso node geometry data is first centered on 

the geometric origin, and then the nodes are projected to a cylinder surface. 𝜃 is degree from 

the y axis to the node and h is the height from the x–y plane to the node.  
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Figure 4 Registration of the torso node to the 2D plane.  

In figure 5, it shows the results of all the transformation from all the pigs. The 3D view 

shows the original 3D distribution of the torso node, where the ECG is recorded. The 2D 

scatter plot shows the distribution of the node after the projection to a cylinder. The double 

arrow indicates the region that belongs to the anterior, posterior, top, or bottom area of the 

torso. 

 

Figure 5 Results of torso nodes registration to the 2D plane.  

2.5.2 Transforming 1D data into 2D 

Bilinear interpolation is used for the sampling method. The sampling points are a grid 

of width 90 pixels and height 30 pixels, as shown in Figure 6. Over the left side part, it shows 

normalized torso node distribution. Node color is mapped to the potential value. Over the 

right side part, it shows grids with 30x90 pixels are merged with the scattered node. Nodes 

in the grid are used as sampling points. The potential values are computed by the bilinear 

interpolation method. The potential value shown here is data from pig1’s first recording at 

90 ms after pacing. 
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Figure 6 Use the bilinear interpolation to transform data into 2D. 

2.5.3 Epicardial surface node registration 

 For the epicardial node, the original data is a sequence of electrocardiograms. Each 

pig has their own sequence and each electrocardiogram is from a different recording location; 

there is no geometrical correlation to the sequence of leads. 

To unify the data across all pigs’ data, we invented a way of translating the 

electrocardiograms into the same sequence and number. The overall concept is that we 

projected the epicardial node to the x–y plane and used a template node distribution as the 

sampling point over the projected node. Since the sequence of nodes in the template is fixed, 

we can transform the original data into 1D data in which the data sequence has a fixed 

geometrical order; Figure 7 shows this process. 

As shown in Figure 7 the node at the tip of the heart over the apex is used as the origin 

in the coordinate system. The epicardial node is projected to the x–y plane first. The result 

will be a scattered map containing the orientation of the node to the body. However, some 

nodes may overlap with each other since they can be on top of each other. To have a more 

evenly distributed map, we extend the nodes’ location along the vector from the origin to the 

nodes. The result will be a 2D scatter map where the location indicates the orientation of 

nodes and the distance to the tip of the nodes in the original 3D space.  

Since different hearts have different shapes, the distributions of the nodes are not 

circular but oval. To further normalize the distribution, we further chop the map into pies. 

The radius of each pie is the radius of the node that is the most distant from the center L. 

The nodes inside the pie are further shrunk with same ratio toward the center, so that all 

nodes will be within a smaller pie with radius R. After this process, all nodes will be within 

a circular area with radius R. When the arc of the pie is set to 30°, it means that the whole 

scatter plot is divided into 12 pies;  
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Figure 8 shows the epicardial registration results from the four pigs. The apex of the 

heart is used as the origin of the coordinate system. The node is then projected onto the x–y 

plane at n and then the node is extended along the vector between the tip and n until its 

distance between origin and node is r. r is the distance between the origin and the epicardial 

node; the final location is n’ on the x–y plane. The scatter plot is further shrunk to a circular 

area by dividing the map into pie-shaped sections. From each section, find the node M with 

the maximal radius L and then shrink this node concentrically to a position with radius R. 

For the rest of the nodes in this pie area, reduce their radius so that the ratio of the new radius 

to the old radius is retained (equal to L/R). The arc of the pie area in this figure is 30°.  

 

Figure 7. Registration of epicardial notes to the 2D plane.  

In Figure 8, it shows the result of all the transformation from 5 pigs. Over the top row, 

original 3D distribution of the epicardial nodes. Over the middle row, first registration of the 

nodes. Over button row, further transformation of the nodes into a circular area. 

 



 

12 

 

 

Figure 8 Results of epicardial node registration to the 2D plane.  

 

2.5.4 Transforming 1D data into 1D data with the same geometrical sequence 

Each pig during the experiment has their own sequence. After epicardial node 

registration, we can map the potential to the 2D scatter plot. We established a template with 

165 nodes; the choice of location is rather arbitrary; we used seven layers of circles to cover 

the region of the 2D scatter plot. These 165 nodes are then used as sampling points to obtain 

the potential values. We used bilinear interpolation to acquire data, which is then further 

transformed into 1D data based on the template’s node sequence. Here, the sequence we use 

is to put the first node at the center and then gradually go outward in a clockwise pattern. 

Since the sequence is fixed, even different pigs with different node sequences will have 

similar geometric sequences, as shown in Figure 9. Over the left most part, the first 10 nodes 

of the original potential data sequence 90 ms after pacing. The left scatter plot shows all 

epicardial nodes after the new registration. The bigger nodes are those 10 examples. The 

small purple nodes are the sampling locations of the template. The right scatter plot shows 

the results from sampling over the location on the template. The bigger nodes are the first 

10 nodes of the template. Over the right most part, the first 10 nodes of the potential data 

after transformation. The potential values shown here are data from pig1’s first recording at 

90 ms after pacing. 
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Figure 9. Transformation of 1D data by resampling with the new registration.  

 

The overall data flow of part II will be as follows: 

1 Transform the 1D data of the epicardial potential into a 2D scatter plot. 

2 Use a template with 165 nodes to sample the potential. 

3 Train the model that is output in the form of 165 1D sequences. 

4 During testing, the output of the model is transformed back into the original sequence 

of epicardial potential by sampling the potential using the 2D scatter plot location. 

 

2.5.5 Model selection 

We used a simple neural network composed of three layers of a Convolutional Neural 

Network (CNN). The average pooling layer is also used, as shown in Figure 10. In the figure, 

filter 32 indicates that the output depth of the CNN layer is 32. As for tanh is the hyperbolic 

tangent that is used as an activation function. Hyperbolic Tangents are used as the activation 

function.  
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Figure 10. The Model used in cross-validation for different pigs in part II study 

2.6 Model evaluation 

2.6.1 Leave-one-out cross-validation. 

In part I, when no geometry is considered, one full electrocardiogram cycle is the most 

meaningful representation of the heart activity, we chose each recording as single 

observation. Each recording takes turns being used as validation data while the rest is used 

as training data. For example, if there are 13 recordings from one pig, each recording will 

take a turn to be used as a validation set while the rest will be used as a training set; there 

are 13 trained models in total. 

In part II, each pig has their own geometry. To show how the model performs with 

different geometry, the whole set of recordings from each individual pig are used as a single 

data unit. Each pig’s data takes a turn being used as the validation data while the rest of the 

data are used as training data. For example, there are 61 recordings from four pigs and 13 

recordings from pig 1. For the first cycle of cross-validation, 13 recordings from pig 1 will 

CNN,filters 32, kernel [2,2], relu

Average Pooling, size [2,2],stride 2

Input dimension 30x90

CNN,filters 32, kernel [2,2], relu

FCN 512 node,  tanh 

Output dimension 1x165

CNN model 

Average Pooling, size [2,2],stride 2

Flatten Layer

CNN,filters 32, kernel [2,2], relu



 

15 

 

be used as validation data while the remaining 48 recordings will then be used for training. 

There will be four trained models after cross-validation. 

 

2.6.2 Evaluation metric: potential prediction 

The correlation coefficient (CC) is used to evaluate the predictions of 

electrocardiograms for individual leads across all time steps. The CC at electrode  𝑘  is 

defined as follows: 

𝐶𝐶𝑡𝑖𝑚𝑒−𝑘 =
∑ (𝑉𝑀

𝑖 − 𝜇𝑀)𝑡
𝑖=1 (𝑉𝑅

𝑖 − 𝜇𝑅)

√∑ (𝑉𝑀
𝑖 − 𝜇𝑀)𝑡

𝑖=1

2
√∑ (𝑉𝑅

𝑖 − 𝜇𝑅)𝑡
𝑖=1

2
 

(1) 

 𝑉𝑀
𝑖  and 𝑉𝑅

𝑖  are the potential at electrode 𝑘 for measured (M) and reconstructed (R). 𝑡 is the 

length of samples (sequence being recorded) 𝜇𝑀 and 𝜇𝑅 are the corresponding mean values 

across all samples. 

Each recording will have 239 correlation coefficients since there are 239 epicardial leads 

and thus 239 recordings. For representation, we will only show the mean of all correlation 

coefficients across these 239 nodes. 

 

2.6.3 Activation time reconstruction and pacing site localization 

Potential reconstruction is only the first step in monitoring heart activity. To show the 

potential use of ECGi, we try to reconstruct the activation time and later predict the initial 

pacing site. 

The activation time (AT) is often used to determine the source of pacing. The definition 

of AT at electrode 𝑘 is as follows: 

𝐴𝑇𝑘 = argmax
𝑡

(−
𝑉𝑡+𝑑𝑡 − 𝑉𝑡

𝑑𝑡
) (2) 

𝑉𝑡+𝑑𝑡 − 𝑉𝑡 is the potential difference after one time step at the t-th sample. The activation 

time will be the time step that has the maximal voltage decline in one-time step. In our study, 

𝑑𝑡 is set to one sampling time 0.5 ms. The node that has the smallest activation time will 

then be predicted as the pacing site. 
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2.6.4 Evaluation metric: activation time 

The correlation coefficient (CC) is also used to assess the accuracy of the predicted 

activation time, shown as follows: 

𝐶𝐶𝐴𝑇 =
∑ (𝐴𝑇𝑀

𝑖 − 𝜇𝑀)𝑁
𝑖=1 (𝐴𝑇𝑅

𝑖 − 𝜇𝑅)

√∑ (𝐴𝑇𝑀
𝑖 − 𝜇𝑀)𝑁

𝑖=1

2
√∑ (𝐴𝑇𝑅

𝑖 − 𝜇𝑅)𝑁
𝑖=1

2
 

(3) 

𝐴𝑇𝑀
𝑖  and 𝐴𝑇𝑅

𝑖  are the activation time at electrode 𝑖 for the measured (M) and reconstructed 

(R) value, 𝑁 is the number of leads, and 𝜇𝑀 and 𝜇𝑅 are the corresponding mean values 

across all activation times. The activation times are further smoothed by incorporating the 

global activation fields. [10] 

2.6.5 Evaluation metric: localization error 

Activation times are used to find which node activates first. The node with the smallest 

activation time is chosen as the initial activating node. The localization error will be the 

Euclidean distance between the node identified by the recorded potential and the node by 

the reconstructed potential. We did not use the real pacing site to calculate the localization 

error; one reason for this is that we do not have the exact pacing site location for the 

endocardial pacing data. For another, the pacing site predicted from the recorded electrogram 

is not the same as the real pacing site. To simplify the analysis, we used the pacing site 

derived from the recorded electrogram as the ground truth. 
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                                                              Chapter 3  

Results 

3.1 Potential visualization 

Figure 11 shows an example of the potential visualization. From the top row to the 

bottom row, the figure shows the potential from three-time steps. The top row is during the 

initial depolarization, the middle row is during the late depolarization process, and the 

bottom row is the repolarization phase. 

In Figure 11, the figure shows the potential from three-time steps from top to bottom. 

In the first column, electrogram of the recorded and predicted potential. The vertical red line 

indicates the time step. In the second column, it shows visualization of the torso potential. 

In the third column, it shows potential from the torso lead recording after 2D transformation. 

In the fourth column, it shows visualization of the epicardial potential. In the fifth column, 

it shows epicardial node potential after transformation into a template. In the sixth column, 

it shows visualization of the reconstructed epicardial potential. In the fourth column, we 

show the epicardial node potential after its transformation into a template. The rightmost 

column shows the potential being reconstructed. 

 

Figure 11, Example of potential visualization.  
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In Figure 12, the corresponding correlation coefficients are shown in the right upper 

part of the sub-figure. The testing data shown here is the first recording from pig 2. In the 

figure, FCN indicate prediction result from a fully connected neural network for the same 

pig cross-validation. LSTM indicate prediction result from the Long Short-term Memory 

model for the same pig cross-validation. CNN indicate prediction result from the 

convolutional neural network for different pig cross-validation. 

 

Figure 12 Examples of epicardial site electrograms (Recorded and Predicted).  

3.2 Median Correlation Coefficient 

Figure 13 shows the cross-validation result. For example, the dot in the figure over 

Part I from the FCN model testing result represents one of the cross-validation model test 

results. The dot represents the median correlation coefficient across all epicardial nodes 

𝐶𝐶𝑡𝑖𝑚𝑒−𝑘 as indicated in formula (1). For another, the model trained from pigs 2–4 is tested 

on the data from pig 1. Each recording will have one median correlation coefficient so there 

are 13 dots shown on part II from the CNN model first strip of dots. In the left side figure, 

cross-validation results using data from the same pig. In the right-side figure, cross-

validation results using data from all pigs. Each dot represents the median correlation 

coefficient across 239 epicardial nodes. 
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Figure 13 Cross-validation results  

The results show that when considering only data from a single pig, the performance 

is quite varied. For example, the Fully-connected neural network (FCN) and Long Short-

term Memory network (LSTM) performed well in pigs 1 and 3 with median correlation 

coefficients >0.8. If we accumulate all correlation coefficients from all results, the overall 

median of the correlation coefficient with the first to third quantiles are 0.90[0.68–0.96] and 

0.82[0.54–0.93] for FCN and LSTM, respectively.  

When combining all data, the overall performance is poorer. If we accumulate all 

correlation coefficients from all results, the overall median of the correlation coefficient with 

the first to third quantiles is 0.74[0.22–0.89]. This is shown in the right-side part of Figure 

13.  

3.3 Activation Time Correlation 

Figure 14 is an example of an activation time map. The darker areas indicate a shorter 

activation time. From the figure, we can also note that even the activation time derived from 

the recorded electrocardiogram cannot find the real pacing site. The recording here is from 

pig 2. Over the left upper subplot, the activation map is derived from the recorded 
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electrogram. The spots represent one node over the epicardial surface. The colors indicate 

the value of the activation time. Over the right upper subplot, the activation map is derived 

from the electrocardiogram reconstructed by Fully Connected Neural network model. Over 

the left lower subplot, the activation map is derived from the electrogram reconstructed by 

Long Short-term Model. Over the right lower subplot, the activation map derived from the 

electrogram is reconstructed by Convolutional Neuro Network model. Green triangle shows 

the real pacing site in the experiment. Light Blue triangle shows predicted pacing site that 

has the lowest activation time. 

 

Figure 14 Examples of Activation Time Maps shown in the Scatter Plot. 

The activation time map from the recorded data is compared with that from the 

reconstructed data as shown in Figure 15. Over the left side part of figure, it shows the 

correlation coefficient of the activation time map over the validation data in cross-validation. 

Over the left side part of figure, it shows correlation coefficient of the activation time map 

over all validation data in cross-validation. Each dot represents the correlation coefficient 

between the activation time map from the recorded data and the reconstructed data.  
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Figure 15, Correlation Coefficients between the Activation Time map derived from the 

recorded and reconstructed electrogram.  

The result from the part I study shows a great variation amount for different data, while 

some of the data can show a correlation coefficient of up to 0.9, a lot of the data show 

negative correlation. The overall median of all correlation coefficients with the first to third 

quantiles are 0.86 [0.61–0.93] and 0.52 [0.05–0.80] for the FCN and LSTM models, 

respectively. The part II study, which combines all available data and shows much better 

performance with only one result below 0. The median of all correlation coefficients with 

the first to third quantiles is 0.82[0.67–0.93]. 

3.4 Localization error 

Figure 16 shows the localization error from different cross-validation results. The 

results from the part I study show a great variation amount for different data, some locate 

the exact same node with the initial activation while some are around 60 mm apart. The 

median of all localization errors and first and third quantiles are 10.4 [3.6–22.6] mm and 

18.5 [6.4–41.5] mm for the FCN and LSTM model results, respectively. 
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The performance is much better for the results from the part II study. All the 

localization errors and the first and third quantiles of all localization errors are 9.3[3.4–17.0] 

mm.  

 

Figure 16, Localization error.  
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                                                              Chapter 4  

Discussion, Conclusion and Future Works 

4.1 Interpretation of the results 

One of the main advancements in this study is solving the overfitting. Currently, neural 

networks have great flexibility to fit nearly all data types. However, a common problem is 

that the model cannot generalize to the data that the model has not seen. During our training, 

we observed that when using even a simple neural network with one fully connected layer, 

the model can converge to nearly obtain a correlation coefficient of 1. However, the 

overfitting problem always occurs.  

In our dataset, the pattern of pacing has sufficient variability with the pacing site across 

all areas of the heart surface and endocardium. This probably explains why our results are 

much better than previous studies using neural networks. This may also explain the better 

results in part II that incorporate much more data with different pacing sites. 

When viewing the result, we can see the variability between different pig and different 

recording varied greatly. For example, in part II study, the CNN model performs very well 

when cross validate on the pig 5, which shows correlation coefficient all above 0.8. However, 

in pig 2, some recording even shows negative correlation. This may be due to small date set. 

And the data set is not large enough to cover all the possible variability of the heart condition. 

Another observation is that when we compare the result from part I and part II. This can be 

explained by the fact that, in part II study, we incorporate data across different pig and greatly 

increase the training data.  

 

4.2 Comparison with Previous Reported Accuracy 

Most previous studies have median correlation coefficients of around 0.7. With a 

relatively simple model, we can achieve an overall correlation coefficient of around 0.74; 

see Table 2. This table is adapted from Table 2 in Bear et al.[5]. The results are presented as 

mean±𝑆𝐷 or median [interquartile range] *Only show the results from paced data. ** The 

results shown here are from the CNN model in this study. 



 

24 

 

Table 2 Comparison with Previous Studies for the Reconstruction of Epicardial Potential.  

 

There are only five pigs, which means that the geometrical variance may not be 

sufficient to gain a better prediction. Considering that our data set is relatively small, this 

result is quite promising.   

 

4.3 How important is the geometrical information? 

We show that a rough geometrical transformation is sufficient for a model to make 

predictions. In the transformation of torso node information, the projection of nodes to the 

cylinder surface will definitely eliminate some information. For transformation of the heart 

node, the distortion is even greater and the registration did not consider the position of the 

heart in the body. However, the result shows that the information is sufficient to provide a 

model that can make predictions and avoid overfitting. 

This result shows a possibility to avoid the need for geometric information. For example, 

we may use a standard torso body and heart as template for registration of electrode 3D 

location. When a new patient being tested, the electrode’s position will then be registered by 

the standard body. And the predicted epicardial potential can than be view on the standard 

heart. With this work flow, we can avoid the need for performing CT or MRI examination. 

However, this will need a lot more study to realize.  

Subject type Subjects 
ECG 

cycles 

Electrogram 
Correlation 
Coefficient 

Localization 
Error  
mm 

Activation Time 
Correlation 
 Coefficient 

Reference 

Torso tank  4 >0.8 2-10  [1, 11] 

Human 3 5 0.72±0.25 13±8  [12] 

Human 4 79  13±9  [13] 

Human*  6   0.68±0.17 [6] 

Human 4 46  20.7[9.6–33.2] 0.71[0.65–0.74] [14] 

Dog 4 93 0.71[0.36–0.86] 10[7–17] 0.82 [15] 

Pig 9 118  20.7[13.8–

25.6] 

 [16] 

Pig 5 70 0.72[0.40–0.84] 16[9–26] 0.78 [5] 

 Pig** 5 71 0.74[0.22–0.89] 9.3[3.4–17.0] 0.82[0.67–0.93]. This study 
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4.4 Potential clinical application 

The dataset we use in this study is epicardial pacing. The corresponding condition in 

disease will be premature ventricular contraction, which is also an abnormal excitation site 

from ventricle. This study shows the potential to identify the origin of premature ventricular 

activation from non-invasive recording of electrocardiogram of body surface. The 

information can be used to assist ablation site identification.  

4.5 Limitations 

Our dataset still has a limited scope; it did not contain rhythms such as atrial fibrillation, 

ventricular fibrillation, or ventricular premature beat. In addition, it did not contain data from 

hearts with scarring. Therefore, the model can only be applied to conditions such as sinus 

rhythm or epicardial pacing. This study only used four pigs. Pigs with significantly different 

geometry may show poor results. 

4.6   Conclusions 

A neural network can be used to solve the inverse problem of ECGi with relatively small 

datasets. Our best result shows overall median of the correlation efficient for the 

reconstructed epicardial potential to be 0.74. Our study also shows that a rough geometrical 

information of torso and heart may be enough to reconstruct the epicardial gram. 

Performance of the model is inconsistent between different recording and pig. This may be 

due to relatively small dataset and may improve with larger dataset. As shown in part II 

study, it has better result when model is trained with more data. In clinical setting, this study 

shows the potential to identify source of pacing site with non-invasive electro-cardiogram 

recorded from the surface, which can be apply to evaluation for patient with premature 

ventricular contractions.   
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