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Solving Inverse Electrocardiographic Mapping
Using Machine learning and Deep Learning
Frameworks

Ke-Wei Chen! Che-Wei Lin?
Department of Biomedical Engineering

National Cheng Kung University, Tainan 701, Taiwan, R.O.C.

Abstract

Electrocardiographic imaging reconstructs the heart surface as an electrogram using
the potentials recorded from the body surface. This problem is called the inverse problem.
Due to the ill-posed nature and the difficulty in modeling the conductive property of the
body, currently, the overall accuracy for a reconstructed electrogram is only 0.7(median
correlation coefficient for activation time map). This study tries to improve the model’s

accuracy using a neural network.

Electrocardiograms are simultaneously recorded from pigs’ hearts and their body
surfaces. For part | of the study, we trained and tested the model with the same pig. The
neural network is composed of Fully Connected Neuro network (FCN) and Long Short-term
Memory (LSTM) neural network. For part Il of the study, we align the data from five
different pigs by transforming the torso potential data into 2D data and transforming the
epicardial potential data with a registration method. A Convolutional Neural Network is used

to construct the model. We evaluated the method using leave-one-out cross-validation.

For the reconstructed electrogram in part I, the overall median of correlation efficient
with the first to third quantiles are 0.90 [0.68-0.96] and 0.82 [0.54-0.93] for FCN and LSTM,
respectively. In part Il, the overall median of the correlation efficient with the first to third
quantiles is 0.74 [0.22-0.89].

1 Student
2 Advisor



For the reconstructed activation map in part I, the overall medians of the correlation
efficient with the first to third quantiles are 0.86 [0.61-0.93] and 0.52 [0.05-0.80] for FCN
and LSTM, respectively. In part Il, the overall median of the correlation efficient with the
first to third quantiles is 0.82 [0.67-0.93].

For the localization error of the predicted pacing site in part I, the overall medians of
the correlation efficient with the first to third quantiles are 10.4 [3.6-22.6] mm and 18.5
[6.4-41.5] mm for FCN and LSTM, respectively. In part Il, the overall median of the
correlation efficient with first to third quantiles is 9.3 [3.4-17.0] mm.

In conclusion, a neural network can be used to solve the inverse problem of ECGi
with relatively small datasets. Our best result shows overall median of the correlation
efficient to be 0.82. Our study also shows that a rough geometrical information of torso and
heart may be enough to reconstruct the epicardial gram. Performance of the model is
inconsistent between different recording and pig. This may be due to relatively small dataset
and may improve with larger dataset. As shown in part 1l study, it has better result when
model is trained with more data. In clinical setting, this study shows the potential to identify
source of pacing site with non-invasive electro-cardiogram recorded from the surface, which

can be applied to evaluation for patient with premature ventricular contractions.

Keywords: Electrocardiographic imaging, inverse problem, Machine learning, Deep Learning
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Chapter 1

Introduction and Background

1.1. Inverse Electrocardiographic Mapping

Studying the electrical activity of the heart is important for clinicians to make diagnoses
or for monitoring. By placing electrodes over the body surface, such as the chest and limbs,
we can reveal the electrical activity remotely and non-invasively. The graph data we gather
is referred to as electrocardiography (ECG or EKG). The recording can also be invasive,
gathering potential information directly from the endocardium through a catheter. The
information gathered is referred to as an intra-cardiac electrogram. By combining the
electrogram with its geometrical location, we can map the results to the endocardial surface,

which is referred to as electroanatomical mapping.

Monitoring the heart’s electrical activity via body surface recordings is an indirect
measurement method. For example, the typical 12-leads ECG system only shows 12 time
series data with a rough direction for each potential recording; therefore, it is difficult to
locate the anatomical location of abnormalities. It will be very helpful if we could directly
see the heart potential with its geometrical location over the heart. There have been many
attempts to map body surface recordings to the heart; this process is called inverse
electrocardiographic mapping. Usually, the target of mapping is the potential over the heart
surface (epicardial potential). This mapping can also be referred to as electrocardiographic
imaging (ECGi).[1]

ECGi is currently use for heart arrythmia, since it can provide the geometrical
information of the electrical abnormality of a heart. Currently, atrial arrhythmias(Af) is the
most common arrhythmia that incorporate the ECGi into the workflow for treatment. For
example, it can be use to identify the specific patterns of activation, which will help the
physician to plan the ablation before sending the patient to the table. ECGi can also help
physician to find the source of pacing source. This will be useful for the premature
ventricular contraction(PVC) ablation. Furthermore, ECGi has also been used to recognize
the potential slow conduction area of heart. This information can be used to stratify risk of

ventricular arrythmias.[2]



1.2. The importance of inverse electrocardiographic mapping

For ablation of the arrhythmia source, it is important to identify the location of the
abnormal rhythm. Traditionally, this is done by electroanatomical mapping, which is done
by recording the potential information of the endocardium through a catheter. Currently,
physicians need to perform mapping directly by repeatedly touching the endocardium with
a catheter, which can be time-consuming. Inverse electrocardiographic mapping can reduce
the time and provide opportunities for pre-operation evaluation. This has already been used
in the clinical field for pre-operation evaluation or quick analyses during operations. One

example is the ECGi system (Cardiolnsight, Medtronic Inc, Minneapolis, MN).

1.3. Traditional Methods
Traditional methods for solving the problem are generally composed of two steps.[3]
The first is call forward problem formulation, which uses the heart as an electromagnetic
source. A cardiac source model can be constructed using Maxwell's equations and

geometrical information. It is usually put in a matrix A:

Or = Ay 1)
@ is the potential over the body surface in vector form, @, is the potential over the heart
surface, and A is the matrix that transforms the heart surface potential into the body surface
potential, which usually requires geometrical information of the body and heart. The

modeling of matrix A is usually referred to as a forward problem.
The second step is to perform an inversion of matrix A.

Oy =A""0r (2)
A~1 is the inverse matrix of A. This problem is usually referred to as an inverse problem.

Multiple methods has been developed based on this framework. The source of
electrical activity can be directly modeled as the epicardial potential; it can also be modeled
from the activation time. The first method is called the potential-based model and the second
Is the activation-based model. The Boundary Element Method (BEM) is used to solve matrix
A, but it required a mesh from the 3D geometry, which could sometimes be time-consuming
and can introduce mesh-related defects. The meshless method of fundamental solutions
(mMFS) was developed to solve this problem. [4] We can simply model the medium

between the heart and body surface as a medium with consistent conductivity, which is



referred to as homogeneous modeling. We can also consider the different conductivity within
different tissue, such as lung, muscle, and fat; this model is referred to as an inhomogeneous

model.

1.4. Problems faced in current methods

Despite the simplicity of this modeling method, it has many problems. For one, the
inversion of matrix A is not unique. Moreover, the inverse problem is ill-posed, which means
that the prediction is subject to noise in the body surface potential; it required further
regularization [3]. Those abovementioned problems may explain why the currently reported
accuracy of the reconstructed potential is still not ideal; see Table 2. There are different ways
to obtain validation. For the torso tank experiment, which used a tank with body surface and
dog heart as the potential source, the median correlation coefficients can be up to 0.8 (median
correlation coefficient for electrogram). For an in-situ animal study, the potential from the
heart and body surface are simultaneously recorded from animals such as dogs or pigs. The
current accuracy for this study is around 0.7 (median correlation coefficient of activation
time map) [5]. For validation in a clinical setting, the current result is also around 0.7 (median
correlation coefficient of activation time map) for paced rhythm. The results are even worse

for normal QRS, which is 0.03 (median correlation coefficient of activation time map).[6]

1.5. Neural network for prediction

In recent years, neural networks have proven to be a useful tool for modeling data with
complex relationships. Currently, only a few attempts have been conducted to solve the
inverse problem with a neural network. In one study [7], data is collected from a torso tank
setting using Time Delayed Neural Nets and Feed Forward Neural Nets (FFNNSs). Their
results are not very ideal with most having a median correlation coefficient <0.5. There are
two main problems; the first of which is overfitting. The model converges well in the training
round but performs poorly in the testing round. The second problem is how to apply different
subjects with different heart and body geometry. This problem exists because the training

data does not contain information from the geometry. [7]

In our study, we will build our model directly from data collected from an in situ animal
study. To build a model that can be applied to subjects with different geometries, we will
create a data registration method to incorporate the geometric information into the data

sequence.



Chapter 2
Material and Methods

2.1 Overall design of the study

The open dataset for the ECGi study is quite limited. In search of the internet, there is
only one website (Experimental Data and Geometric Analysis Repository EDGAR [8]) that
store the electrocardiogram date, and is open to public. Even in the repository, the amount
of data is limited. Usually, only partial recording is provided. Out of luck, we have been to
able to make contact with Laura Bear who the main collector of a dataset. She performed
the animal study to acquire this dataset during her doctoral study in Auckland university in
new Zealand. With this dataset in hand, we design our study as shown in Figure 1. Part |
indicates the study that trains data only for the same pig. Part 11 study uses data from all four
pigs and has an additional step (Registration of electrogram data) that transforms the original
data into a uniform data format. (Metrics) Models are evaluated in three ways. One is the
correlation coefficients for the reconstructed electrogram to the recorded one. One is the
correlation coefficients for the AT map derived from the reconstructed and recorded

electrogram. CC correlation coefficients. AT map activation time across all epicardial nodes.



Auckland insitu-animal
5 pigs pairing ecg simultaneous
recording of torso and heart

vy

Filtering
band limited (0.05-1000 Hz)

v

Signal Smoothing and zero mean
Moving mean and synchronized average
Zero mean the beginning of ECG recording

Part | Partll

v

Registration of ecg data
1.Heart ECG based on template
2.Torso into 2D

\ 4 L 2
Original Data Data with new registratoin
Input data: torso ECG 1D Input data: torso ECG 2D
Qutput data: epicardial ECG 1D Output data: epicardial ECG 1D
v ‘}
Train with 2 methods Train with 1 method
1. FCN 2. LSTM 1. CNN
Cross validation over same pig Cross validation over different pig
over same pig Over different pig
Using original Using modified Heart ECG input
Heart ECG as output
v v
Metrics Metrics
CC for Potential and AT map, CC for Potential and AT map,
Localization error Localization error

Figure 1 Overall study process.

2.2 Data collection

Previous literature illustrates the details of the data collection process. [9] A short
summary of the experiment is provided below. There are two sets of data being collected.
One is electrograms recorded from a vest wrapped around a pig. The electrograms record
the potential change in the pigs’ body surface. Another set is electrograms recorded from a
sock wrapped around the heart. The electrograms show the potential changes of the heart
surface, as shown in Figure 2. (On the left) Demonstration of a pig’s heart surrounded by a

sock with multiple electrode. (In the middle) Demonstration of a pig’s trunk with heart in



the middle. The stripes indicate the array of electrode over body surface. (On the right) The
position of electrode and geometrical information of the heart and body is extracted from

MRI image. The figure is adapted from [5]

Torso and ventricular potentials recorded
in closed chest pigs (n=5)

Torso and electrode positions determined with MRI
Figure 2 Electrodes over pig’s heart and torso surface

To place the recording leads, five anesthetized pigs (around 30—49 kg) underwent a
midline sternotomy. A sock containing 239 unipolar silver wire electrodes was then placed
around the heart. After the procedure, the chest was closed and air was expelled from the
lungs. Flexible stripes containing electrodes were placed inside a vest that was wrapped
around the pig’s torso. The epicardial and body surface potentials were then recorded
simultaneously. The electrocardiograms are then recorded with a sampling rate of 2 kHz and
a bandwidth limitation of 0.05-1,000 Hz. The electrograms are further smoothed by moving
the mean and synchronized average. To reduce the effect of potential shifting, we
synchronously shifted all electrograms so that the mean of all potential values across all

nodes at the beginning of the cycle equals zero.

There are three pacing types: sinus rhythm, epicardial pacing, and endocardial pacing.
The pacing sites are all across the heart. Overall, there are 76 recordings, each of which
contains around 10-20 beats. Table 1 shows the composition of the data. About 10-20% of
the leads on the vest took poor recordings. We used linear interpolation to fill up the missing

data.



2.3 Final data used in the study

The data is further smoothed by synchronized average and moving mean. After this
process, each pacing site or sinus rhythm contains only one cycle of electrocardiogram. The
number of leads over the torso surface is around 150-170 and the total number of epicardial
leads is 239. Table 1 shows the number of recordings from different pacing sites and
recording leads. Over the shaded area, number of recordings with different pacing sites or
rhythms. Over the button 2 rows, number of recording leads over the torso and epicardial
surface. Note that the whole electrogram cycle is used for model training and testing. Unlike

most studies, only the potential during ventricular activation is used.

Table 1 Number of recordings from different pacing sites and recording leads.

Pig 1 Pig 2 Pig 3 Pig 4 Pig 5
Sinus rhythm 1 1 1 1 1
Endocardial pacing 4 5 0 12 10
Epicardial pacing 8 18 4 0 10
Total number 13 24 5 13 11
Torso lead number 158 150 171 165 170
Epicardial lead number 239 239 239 239 239

Since each pig has a different experiment setting, there is no consistency regarding the
number of recording leads over the torso and different leads are set at different geometrical
locations. We can train the model directly from the data but the model may only apply to
data with the same experimental setting. Thus, we divided the experiment into two parts. For
the first, we only considered the problem within each individual pig and we built the model
only for the same pig. For the second part, we incorporated a registration method to unify
data from different pigs.

2.4 Part I study: without Considering the Geometry
2.4.1 Model selection

Two methods are used to establish a model. One is a neural network with a few fully
connected layers using Hyperbolic Tangent as an activation function, as shown in Figure 3.
Another is the Long Short-term Memory (LSTM) model, the structures of which are shown

in Figure 3. Over the left part, it shows the fully connected model used in this study. Over



right side, it shows the LSTM model used in this study. The input size ranges from 1x150—
165 depending on the ECG recording vest used for different pigs.

Fully-connected model LSTM model
| Input dimension 1x150~165 | | Input dimension 1x150~165 |
| FCN 1024 node, tanh | | LSTM 256 hidden unit |
| FCN 1024 node, tanh | | FCN 239 node |
| FCN 1024 node, tanh |
l | Output dimension 1x239 |

| FCN 239 node |

Y

| Output dimension 1x239 |

Figure 3 Models used in cross-validation over data in the same pigs in Part | study

2.5 Part Il study: Add Geometrical Information

2.5.1 Torso node registration

The locations of torso leads are projected to a cylinder surrounding the torso. Then,
the surface of this cylinder is used as a sampling plane to produce a 2D image as shown in
Figure 4. The torso node geometry data is first centered on the geometric origin and then the
nodes are projected to a cylinder surface surrounding the torso. The nodes’ distance h to the
x-Yy plane will then become the vertical distance. The degree 6 between the y axis and the
node will then be the horizontal distance. The torso node geometry data is first centered on
the geometric origin, and then the nodes are projected to a cylinder surface. 8 is degree from

the y axis to the node and h is the height from the x—y plane to the node.
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Figure 4 Registration of the torso node to the 2D plane.
In figure 5, it shows the results of all the transformation from all the pigs. The 3D view
shows the original 3D distribution of the torso node, where the ECG is recorded. The 2D
scatter plot shows the distribution of the node after the projection to a cylinder. The double

arrow indicates the region that belongs to the anterior, posterior, top, or bottom area of the

torso.

Pig 1 Pig 2

Figure 5 Results of torso nodes registration to the 2D plane.

2.5.2 Transforming 1D data into 2D

Bilinear interpolation is used for the sampling method. The sampling points are a grid
of width 90 pixels and height 30 pixels, as shown in Figure 6. Over the left side part, it shows
normalized torso node distribution. Node color is mapped to the potential value. Over the
right side part, it shows grids with 30x90 pixels are merged with the scattered node. Nodes
in the grid are used as sampling points. The potential values are computed by the bilinear

interpolation method. The potential value shown here is data from pigl’s first recording at

90 ms after pacing.



Figure 6 Use the bilinear interpolation to transform data into 2D.

2.5.3 Epicardial surface node registration

For the epicardial node, the original data is a sequence of electrocardiograms. Each
pig has their own sequence and each electrocardiogram is from a different recording location;

there is no geometrical correlation to the sequence of leads.

To unify the data across all pigs’ data, we invented a way of translating the
electrocardiograms into the same sequence and number. The overall concept is that we
projected the epicardial node to the x—y plane and used a template node distribution as the
sampling point over the projected node. Since the sequence of nodes in the template is fixed,
we can transform the original data into 1D data in which the data sequence has a fixed

geometrical order; Figure 7 shows this process.

As shown in Figure 7 the node at the tip of the heart over the apex is used as the origin
in the coordinate system. The epicardial node is projected to the x—y plane first. The result
will be a scattered map containing the orientation of the node to the body. However, some
nodes may overlap with each other since they can be on top of each other. To have a more
evenly distributed map, we extend the nodes’ location along the vector from the origin to the
nodes. The result will be a 2D scatter map where the location indicates the orientation of

nodes and the distance to the tip of the nodes in the original 3D space.

Since different hearts have different shapes, the distributions of the nodes are not
circular but oval. To further normalize the distribution, we further chop the map into pies.
The radius of each pie is the radius of the node that is the most distant from the center L.
The nodes inside the pie are further shrunk with same ratio toward the center, so that all
nodes will be within a smaller pie with radius R. After this process, all nodes will be within
a circular area with radius R. When the arc of the pie is set to 30°, it means that the whole

scatter plot is divided into 12 pies;
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Figure 8 shows the epicardial registration results from the four pigs. The apex of the
heart is used as the origin of the coordinate system. The node is then projected onto the x—y
plane at n and then the node is extended along the vector between the tip and n until its
distance between origin and node is r. r is the distance between the origin and the epicardial
node; the final location is n” on the x—Yy plane. The scatter plot is further shrunk to a circular
area by dividing the map into pie-shaped sections. From each section, find the node M with
the maximal radius L and then shrink this node concentrically to a position with radius R.
For the rest of the nodes in this pie area, reduce their radius so that the ratio of the new radius

to the old radius is retained (equal to L/R). The arc of the pie area in this figure is 30°,

Figure 7. Registration of epicardial notes to the 2D plane.

In Figure 8, it shows the result of all the transformation from 5 pigs. Over the top row,
original 3D distribution of the epicardial nodes. Over the middle row, first registration of the

nodes. Over button row, further transformation of the nodes into a circular area.
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Pig1 Pig 2 Pig 3 Pig 4 Pig5

Figure 8 Results of epicardial node registration to the 2D plane.

2.5.4 Transforming 1D data into 1D data with the same geometrical sequence

Each pig during the experiment has their own sequence. After epicardial node
registration, we can map the potential to the 2D scatter plot. We established a template with
165 nodes; the choice of location is rather arbitrary; we used seven layers of circles to cover
the region of the 2D scatter plot. These 165 nodes are then used as sampling points to obtain
the potential values. We used bilinear interpolation to acquire data, which is then further
transformed into 1D data based on the template’s node sequence. Here, the sequence we use
is to put the first node at the center and then gradually go outward in a clockwise pattern.
Since the sequence is fixed, even different pigs with different node sequences will have
similar geometric sequences, as shown in Figure 9. Over the left most part, the first 10 nodes
of the original potential data sequence 90 ms after pacing. The left scatter plot shows all
epicardial nodes after the new registration. The bigger nodes are those 10 examples. The
small purple nodes are the sampling locations of the template. The right scatter plot shows
the results from sampling over the location on the template. The bigger nodes are the first
10 nodes of the template. Over the right most part, the first 10 nodes of the potential data
after transformation. The potential values shown here are data from pigl’s first recording at

90 ms after pacing.
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Figure 9. Transformation of 1D data by resampling with the new registration.

The overall data flow of part Il will be as follows:

Transform the 1D data of the epicardial potential into a 2D scatter plot.
Use a template with 165 nodes to sample the potential.

Train the model that is output in the form of 165 1D sequences.

A w N R

During testing, the output of the model is transformed back into the original sequence
of epicardial potential by sampling the potential using the 2D scatter plot location.

2.5.5 Model selection

We used a simple neural network composed of three layers of a Convolutional Neural
Network (CNN). The average pooling layer is also used, as shown in Figure 10. In the figure,
filter 32 indicates that the output depth of the CNN layer is 32. As for tanh is the hyperbolic
tangent that is used as an activation function. Hyperbolic Tangents are used as the activation

function.
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CNN model

Input dimension 30x90

v
CNN,ﬁIters 32, kernel [2,2], relu
v

Average Pooling, size [2,2],stride 2
¥

CN N filters 32, kernel [2,2], relu
v

Average Pooling, size [2,2],stride 2
v

CN N,filters 32, kernel [2,2], relu
v

Flatten Layer
¥

FCN 512 node, tanh

\ 4

Output dimension 1x165

Figure 10. The Model used in cross-validation for different pigs in part Il study

2.6 Model evaluation

2.6.1 Leave-one-out cross-validation.

In part I, when no geometry is considered, one full electrocardiogram cycle is the most
meaningful representation of the heart activity, we chose each recording as single
observation. Each recording takes turns being used as validation data while the rest is used
as training data. For example, if there are 13 recordings from one pig, each recording will
take a turn to be used as a validation set while the rest will be used as a training set; there

are 13 trained models in total.

In part 11, each pig has their own geometry. To show how the model performs with
different geometry, the whole set of recordings from each individual pig are used as a single
data unit. Each pig’s data takes a turn being used as the validation data while the rest of the
data are used as training data. For example, there are 61 recordings from four pigs and 13

recordings from pig 1. For the first cycle of cross-validation, 13 recordings from pig 1 will
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be used as validation data while the remaining 48 recordings will then be used for training.

There will be four trained models after cross-validation.

2.6.2 Evaluation metric: potential prediction

The correlation coefficient (CC) is used to evaluate the predictions of
electrocardiograms for individual leads across all time steps. The CC at electrode k is

defined as follows:
f=1(V1\£1 - IJM) (VI% - .UR)

JEEsV = )’ JZEa (V= o)’

Vv, and V} are the potential at electrode k for measured (M) and reconstructed (R). t is the

CCtime-k =

1)

length of samples (sequence being recorded) u,, and uy are the corresponding mean values

across all samples.

Each recording will have 239 correlation coefficients since there are 239 epicardial leads
and thus 239 recordings. For representation, we will only show the mean of all correlation

coefficients across these 239 nodes.

2.6.3 Activation time reconstruction and pacing site localization

Potential reconstruction is only the first step in monitoring heart activity. To show the
potential use of ECGi, we try to reconstruct the activation time and later predict the initial

pacing site.

The activation time (AT) is often used to determine the source of pacing. The definition
of AT at electrode k is as follows:
Vt+dt - Vt
dt
Vivar — Vi is the potential difference after one time step at the t-th sample. The activation

) )

AT, = argmax(—
t

time will be the time step that has the maximal voltage decline in one-time step. In our study,
dt is set to one sampling time 0.5 ms. The node that has the smallest activation time will

then be predicted as the pacing site.
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2.6.4 Evaluation metric: activation time

The correlation coefficient (CC) is also used to assess the accuracy of the predicted

activation time, shown as follows:
Iiv=1(ATz\i/1 - HM) (AT}%’ - .UR)

\/Z?’:l(ATI\EI - .“M)2 \/Zliv=1(ATig - ”R)Z

AT}, and AT} are the activation time at electrode i for the measured (M) and reconstructed

CCyr =

©)

(R) value, N is the number of leads, and u,, and uy are the corresponding mean values
across all activation times. The activation times are further smoothed by incorporating the

global activation fields. [10]

2.6.5 Evaluation metric: localization error

Activation times are used to find which node activates first. The node with the smallest
activation time is chosen as the initial activating node. The localization error will be the
Euclidean distance between the node identified by the recorded potential and the node by
the reconstructed potential. We did not use the real pacing site to calculate the localization
error; one reason for this is that we do not have the exact pacing site location for the
endocardial pacing data. For another, the pacing site predicted from the recorded electrogram
is not the same as the real pacing site. To simplify the analysis, we used the pacing site

derived from the recorded electrogram as the ground truth.
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Chapter 3

Results

3.1 Potential visualization
Figure 11 shows an example of the potential visualization. From the top row to the
bottom row, the figure shows the potential from three-time steps. The top row is during the
initial depolarization, the middle row is during the late depolarization process, and the
bottom row is the repolarization phase.

In Figure 11, the figure shows the potential from three-time steps from top to bottom.
In the first column, electrogram of the recorded and predicted potential. The vertical red line
indicates the time step. In the second column, it shows visualization of the torso potential.
In the third column, it shows potential from the torso lead recording after 2D transformation.
In the fourth column, it shows visualization of the epicardial potential. In the fifth column,
it shows epicardial node potential after transformation into a template. In the sixth column,
it shows visualization of the reconstructed epicardial potential. In the fourth column, we
show the epicardial node potential after its transformation into a template. The rightmost

column shows the potential being reconstructed.

Pacing Site
Recorded and Predicted
Potential

Recorded Torso data Recorded Epicardial data Predicted
Body Surface Potential Projected to 2D surface Epicardial Potential With new registration Epicardial Potential

Time(ms)

_—— s mV [ s mV
Recorded 2 -1 0 1 2 -15 -10 -5 0 5 10 15
FCN model predicted

Figure 11, Example of potential visualization.
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In Figure 12, the corresponding correlation coefficients are shown in the right upper
part of the sub-figure. The testing data shown here is the first recording from pig 2. In the
figure, FCN indicate prediction result from a fully connected neural network for the same
pig cross-validation. LSTM indicate prediction result from the Long Short-term Memory
model for the same pig cross-validation. CNN indicate prediction result from the

convolutional neural network for different pig cross-validation.
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Figure 12 Examples of epicardial site electrograms (Recorded and Predicted).

3.2 Median Correlation Coefficient

Figure 13 shows the cross-validation result. For example, the dot in the figure over
Part | from the FCN model testing result represents one of the cross-validation model test
results. The dot represents the median correlation coefficient across all epicardial nodes
CCtime—r @S indicated in formula (1). For another, the model trained from pigs 2—4 is tested
on the data from pig 1. Each recording will have one median correlation coefficient so there
are 13 dots shown on part Il from the CNN model first strip of dots. In the left side figure,
cross-validation results using data from the same pig. In the right-side figure, cross-
validation results using data from all pigs. Each dot represents the median correlation

coefficient across 239 epicardial nodes.
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Figure 13 Cross-validation results

The results show that when considering only data from a single pig, the performance
is quite varied. For example, the Fully-connected neural network (FCN) and Long Short-
term Memory network (LSTM) performed well in pigs 1 and 3 with median correlation
coefficients >0.8. If we accumulate all correlation coefficients from all results, the overall
median of the correlation coefficient with the first to third quantiles are 0.90[0.68-0.96] and
0.82[0.54-0.93] for FCN and LSTM, respectively.

When combining all data, the overall performance is poorer. If we accumulate all
correlation coefficients from all results, the overall median of the correlation coefficient with
the first to third quantiles is 0.74[0.22-0.89]. This is shown in the right-side part of Figure
13.

3.3 Activation Time Correlation
Figure 14 is an example of an activation time map. The darker areas indicate a shorter
activation time. From the figure, we can also note that even the activation time derived from
the recorded electrocardiogram cannot find the real pacing site. The recording here is from

pig 2. Over the left upper subplot, the activation map is derived from the recorded
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electrogram. The spots represent one node over the epicardial surface. The colors indicate
the value of the activation time. Over the right upper subplot, the activation map is derived
from the electrocardiogram reconstructed by Fully Connected Neural network model. Over
the left lower subplot, the activation map is derived from the electrogram reconstructed by
Long Short-term Model. Over the right lower subplot, the activation map derived from the
electrogram is reconstructed by Convolutional Neuro Network model. Green triangle shows
the real pacing site in the experiment. Light Blue triangle shows predicted pacing site that

has the lowest activation time.
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Figure 14 Examples of Activation Time Maps shown in the Scatter Plot.

The activation time map from the recorded data is compared with that from the
reconstructed data as shown in Figure 15. Over the left side part of figure, it shows the
correlation coefficient of the activation time map over the validation data in cross-validation.
Over the left side part of figure, it shows correlation coefficient of the activation time map
over all validation data in cross-validation. Each dot represents the correlation coefficient

between the activation time map from the recorded data and the reconstructed data.
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Figure 15, Correlation Coefficients between the Activation Time map derived from the
recorded and reconstructed electrogram.

The result from the part | study shows a great variation amount for different data, while
some of the data can show a correlation coefficient of up to 0.9, a lot of the data show
negative correlation. The overall median of all correlation coefficients with the first to third
quantiles are 0.86 [0.61-0.93] and 0.52 [0.05-0.80] for the FCN and LSTM maodels,
respectively. The part Il study, which combines all available data and shows much better
performance with only one result below 0. The median of all correlation coefficients with
the first to third quantiles is 0.82[0.67-0.93].

3.4 Localization error
Figure 16 shows the localization error from different cross-validation results. The
results from the part | study show a great variation amount for different data, some locate
the exact same node with the initial activation while some are around 60 mm apart. The
median of all localization errors and first and third quantiles are 10.4 [3.6-22.6] mm and
18.5 [6.4-41.5] mm for the FCN and LSTM model results, respectively.
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The performance is much better for the results from the part 1l study. All the

localization errors and the first and third quantiles of all localization errors are 9.3[3.4-17.0]

mm.
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Figure 16, Localization error.
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Chapter 4

Discussion, Conclusion and Future Works

4.1 Interpretation of the results
One of the main advancements in this study is solving the overfitting. Currently, neural
networks have great flexibility to fit nearly all data types. However, a common problem is
that the model cannot generalize to the data that the model has not seen. During our training,
we observed that when using even a simple neural network with one fully connected layer,
the model can converge to nearly obtain a correlation coefficient of 1. However, the

overfitting problem always occurs.

In our dataset, the pattern of pacing has sufficient variability with the pacing site across
all areas of the heart surface and endocardium. This probably explains why our results are
much better than previous studies using neural networks. This may also explain the better

results in part 11 that incorporate much more data with different pacing sites.

When viewing the result, we can see the variability between different pig and different
recording varied greatly. For example, in part Il study, the CNN model performs very well
when cross validate on the pig 5, which shows correlation coefficient all above 0.8. However,
in pig 2, some recording even shows negative correlation. This may be due to small date set.
And the data set is not large enough to cover all the possible variability of the heart condition.
Another observation is that when we compare the result from part | and part Il. This can be
explained by the fact that, in part I1 study, we incorporate data across different pig and greatly
increase the training data.

4.2 Comparison with Previous Reported Accuracy
Most previous studies have median correlation coefficients of around 0.7. With a
relatively simple model, we can achieve an overall correlation coefficient of around 0.74;
see Table 2. This table is adapted from Table 2 in Bear et al.[5]. The results are presented as
mean+SD or median [interquartile range] *Only show the results from paced data. ** The

results shown here are from the CNN model in this study.
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Table 2 Comparison with Previous Studies for the Reconstruction of Epicardial Potential.

) ) ECG Electrogr_am Localization Activation _Time
Subject type [Subjects cycles %%eriilc?it:r)\? Enr]rnczr %Jorerfefliige?l? Reference
Torso tank 4 >0.8 2-10 [1, 11]
Human 3 5 0.72+0.25 1348 [12]
Human 4 79 1349 [13]
Human* 6 0.68+0.17 [6]
Human 4 46 20.7[9.6-33.2] 0.71[0.65-0.74] [14]
Dog 4 93 0.71[0.36-0.86] 10[7-17] 0.82 [15]
Pig 9 118 20.7[13.8- [16]
Pig 5 70 0.72[0.40-0.84] 16[9-26] 0.78 [5]
Pig** 5 71 0.74[0.22-0.89] | 9.3[3.4-17.0] 0.82[0.67-0.93]. This study

There are only five pigs, which means that the geometrical variance may not be
sufficient to gain a better prediction. Considering that our data set is relatively small, this

result is quite promising.

4.3 How important is the geometrical information?

We show that a rough geometrical transformation is sufficient for a model to make
predictions. In the transformation of torso node information, the projection of nodes to the
cylinder surface will definitely eliminate some information. For transformation of the heart
node, the distortion is even greater and the registration did not consider the position of the
heart in the body. However, the result shows that the information is sufficient to provide a

model that can make predictions and avoid overfitting.

This result shows a possibility to avoid the need for geometric information. For example,
we may use a standard torso body and heart as template for registration of electrode 3D
location. When a new patient being tested, the electrode’s position will then be registered by
the standard body. And the predicted epicardial potential can than be view on the standard
heart. With this work flow, we can avoid the need for performing CT or MRI examination.

However, this will need a lot more study to realize.
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4.4 Potential clinical application
The dataset we use in this study is epicardial pacing. The corresponding condition in
disease will be premature ventricular contraction, which is also an abnormal excitation site
from ventricle. This study shows the potential to identify the origin of premature ventricular
activation from non-invasive recording of electrocardiogram of body surface. The

information can be used to assist ablation site identification.

45 Limitations

Our dataset still has a limited scope; it did not contain rhythms such as atrial fibrillation,
ventricular fibrillation, or ventricular premature beat. In addition, it did not contain data from
hearts with scarring. Therefore, the model can only be applied to conditions such as sinus
rhythm or epicardial pacing. This study only used four pigs. Pigs with significantly different
geometry may show poor results.

4.6 Conclusions

A neural network can be used to solve the inverse problem of ECGi with relatively small
datasets. Our best result shows overall median of the correlation efficient for the
reconstructed epicardial potential to be 0.74. Our study also shows that a rough geometrical
information of torso and heart may be enough to reconstruct the epicardial gram.
Performance of the model is inconsistent between different recording and pig. This may be
due to relatively small dataset and may improve with larger dataset. As shown in part Il
study, it has better result when model is trained with more data. In clinical setting, this study
shows the potential to identify source of pacing site with non-invasive electro-cardiogram
recorded from the surface, which can be apply to evaluation for patient with premature

ventricular contractions.
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